LIGHTS ON THE KARYOTIC EVOLUTION WITHIN THE
TELEOSTEAN FAMILY ARTEDIDRACONIDAE

L. GHIGLIOTTI1, T.J. NEAR2, M. VACCHI1, E. PISANO1

1Dip. di Biologia (DIBIO), Univ. di Genova, Viale Benedetto XV 5, 16132 Genova, Italia;
2Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale
University, New Haven, CT 06520-8105, USA; 3ISPRA e MNA, Univ. di Genova

Plunderfishes of the family Artedidraconidae are components of the endemic
Antarctic teleost fish fauna. The family includes 26 species classified in four genera:
\textit{Dolloydracon}, \textit{Histiodracon} (both monotypic), \textit{Artedidracon} (6 species), and \textit{Pogonophryne} (18
species). We performed cytogenetic analyses in six species belonging to three of the four
genera: \textit{Artedidracon glareobarbatus}, \textit{A. orianae}, \textit{A. skottsbergi}, \textit{A. shackletoni}, \textit{Histiodracon velifer}, and \textit{Pogonophryne sp.} The diploid number is highly conserved within the family
(\(2n = 46\)), nevertheless the chromosomal morphology, and the chromosomal organization
of ribosomal genes (45S rDNA), revealed a diversified intra-specific pattern. \textit{A. skottsbergi}
is the only species having heteromorphic sex-linked chromosomes, with the males
having a \(Y\) chromosome and odd diploid number (\(2n = 45\)); in this species the ribosomal
genes are located at an interstitial region on a pair of small acrocentric chromosomes.
The karyotypes of the remaining species can be classified in two homogeneous groups:
a) species having 2 pairs of bi-armed chromosomes in the karyotype and bearing
the ribosomal genes on the q arm of a pair of small-medium sized sub-metacentric
chromosomes (\textit{A. orianae}, \textit{H. velifer}, and \textit{Pogonophryne sp.}), and b) species having 4 pairs
of bi-armed chromosomes in the karyotype and bearing the ribosomal genes on the p
arm of a pair of large-medium sized sub-telocentric chromosomes (\textit{A. glareobarbatus} and
\textit{A. shackletoni}). In order to interpret this pattern, the karyologic data were mapped on a
phylogeny based on mitochondrial (ND2) and nuclear (S7 ribosomal protein intron 1)
genes. The chromosomal peculiarity of \textit{A. skottsbergi} is consistent with its phylogenetic
position as the sister lineage of all the other Artedidraconidae. The karyological similarity
between \textit{A. glareobarbatus} and \textit{A. shackletoni} appears to be a derived condition within
Artedidraconidae and is consistent with the inferred sister relationship between these two
species in the molecular phylogeny.