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ABSTRACT 
During evolution, the appearance of the mesoderm in Bilateria, with the exception of the 

Ctenophora, parallels with the appearance of the two perpendicular body axes. The effectors 
of bilaterian regional specification and pattern formation comprise an evolutionary conserved 
set of transcription factors related to the superclasses of homeoproteins, forkhead, T-box, 
Wnt-pathway and zinc-finger proteins. In sponges, the existence of those major regulatory 
genes causing the establishment of a polar patterning in bilaterians remains to be elucidated. 
Here we report the isolation and phylogenetic characterization of two T-box genes and four 
forkhead genes from the demosponge Suberites domuncula (Olivi, 1792). 
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INTRODUCTION 
During evolution, the appearance of the mesoderm, which is involved in the 

differentiation and formation of tissues in adult bilaterians, parallels with the 
appearance of the two perpendicular body axes. The effectors of bilaterian regional 
specification and pattern formation comprise an evolutionary-conserved set of 
genes, encoding transcription factors related to the superclasses of homeoproteins 
(Hox and non-Hox genes), forkhead, T-box, Wnt-pathway and zinc-finger proteins 
(reviewed in: GALLIOT, 2000; PETERSON & DAVIDSON, 2000). 

Interestingly, members of all these families have been isolated from Cnidarians 
(TECHNAU & BODE, 1999). In sponges the basic elements for the differentiation of 
pluripotent cells to distinct somatic cells through morphogenetic events as cell-cell 
and cell-matrix adhesion, as well as cell migration, have been identified (reviewed in: 
MÜLLER, 1997; WIENS et al., 2001, 2003). However, the existence of those major 
regulatory genes causing the establishment of a polar patterning in bilaterians 
remains to be elucidated. Until now only a few non-Hox genes have been isolated 
from sponges (COUTINHO et al., 1994; SEIMIYA et al., 1994, 1998; HOSHIYAMA et al., 
1998; RICHELLE-MAURER & VAN DE VYVER, 1999; MANUEL & LE PARCO, 2000). 
Due to the basal position of sponges in the phylogenetic tree, the knowledge of the 
developmental mechanisms involved in pattern formation and morphogenesis in 
sponges can clarify the origin and ancestral function of these evolutionary-conserved 
pathways.  
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T-box genes conform a family of transcriptional regulators that share a highly 
conserved region that binds to DNA, the T-box domain. Since the first discovering 
of Brachyury or T gene from mouse (HERRMANN et al., 1990), homologs of Brachyury 
have been isolated from all groups of metazoans, and have been grouped into 
different subfamilies, according to their T-box amino acid (aa) sequence. Brachyury is 
responsible for the differentiation of the notochord, the control of morphogenetic 
movements during gastrulation and the formation of the posterior mesoderm in 
vertebrates (WILKINSON et al., 1990; BEDDINGTON et al., 1992; O’RELLY et al., 1995; 
CONLON et al., 1996; WILSON & BEDDINGTON, 1997). However, the expression in 
the blastopore of Brachyury in Cnidaria has been recently considered (TECHNAU & 
BODE, 1999; TECHNAU, 2001), suggesting a more primitive function of Brachyury in 
the body axis formation. All other T-box genes are also involved in type 
specification and morphogenetic movements during development (HERRMANN & 
KISPERT, 1994; PAPAIOANNOU, 1997; PAPAIOANNOU & SILVER, 1998; SMITH, 
1999; TADA & SMITH, 2001). 

Forkhead proteins comprise a subfamily within the large group of helix-turn-
helix proteins. They are characterized by a “winged helix domain”, consisting of a 
100 aa DNA binding domain that forms a modified helix-turn-helix (KAUFMANN & 
KNÖCHEL, 1996; GAJIWALA & BURLEY, 2000). The founding members were the 
mouse HNF3α, β and γ genes, activators of specific hepatic genes (CEREGHINI, 
1996; COSTA, 1998), together with the Drosophila melanogaster forkhead gene, 
responsible for the formation of terminal structures that develop into the gut 
(WEIGEL et al., 1989). Nowadays the family comprises more than 60 members, all of 
them related with cell differentiation and the proper formation of the embryo 
(KAUFMANN & KNÖCHEL, 1996).  

Here we report the isolation and phylogenetic characterization of two members 
of the T-box family in the sponge Suberites domuncula (Sd-Bra and Sd-Tbx), as well as 
four genes belonging to the forkhead family (Sd-Fox1-4). 

MATERIAL AND METHODS 
Sponge material 
Live specimens of S. domuncula (Porifera, Demospongiae, Hadromerida) were collected by 

SCUBA diving near Rovinj (Croatia) from depths between 15 and 35 m. The sponges were 
brought to Mainz (Germany) and there kept in 103 l tanks at 17° C before use in the 
experiments. 

 
Full-length cDNAs cloning and sequencing  
A sample of one sponge living in the aquarium was shock-frozen, pulverized in liquid-

nitrogen and RNA extracted using the TRIzol Reagent (GibcoBRL, Grand Island, N.Y.). 
Total RNA was reverse transcribed to synthesize pooled cDNA for RACE PCR using the 
“Invitrogen GeneRacer Kit” (Invitrogen, Groningen, The Netherlands). In order to amplify 
T-box related genes, nested PCR with fully degenerate primers encoding the conserved amino 
acid sequences of the T-box domain was performed with this cDNA; NEMIVTK (5’-
AAYGARATGATHGTN ACNAA-3’) and NPFAKAF (5’-AANGCYTTNGCRAANGGR 
TT-3’) were used as a forward and reverse outer primers, while WKYVNGE (5’-
TGGAARTAYGTNAAYGGNGA-3’) and TAYQNEE (5’-TCYTCRTTYTGRTANGCN 
GT-3’) were used for nested PCR reaction. PCR conditions were: 4 min at 94° C (1 cycle) and 
30 s at 94º C, 30 s at 42° C, 20 s at 72° C (35 cycles). In order to amplify forkhead related 
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genes, nested PCR with fully degenerate primers encoding the conserved amino acid 
sequences of the forkhead domain was performed; KPPYSY (5’-AARCCNCCNTAYTCNTA 
-3’) and MFENGS (5’-ATGTTYGANAAYGGNW-3’) were used as a forward and reverse 
outer primers, while KPPYSY and WQNSIR (5’-TGGGARAAYTCNATHMG-3’) were used 
for nested PCR reaction. PCR conditions were: 4 min at 94° C (1 cycle) and 30 s at 94° C and 
30 s at 40° C (35 cycles). Fragments of the expected size were obtained and sequenced using 
standard procedures. The corresponding full-length transcripts were amplified by RACE 
from the same cDNA used above, according to the Producer’s Manual.  

 
Phylogenetic analysis  
The deduced aa sequences corresponding to the T-box and forkhead domains of S. 

domuncula proteins reported here were compared with those from other organisms using the 
neighbor-joining method (SAITOU & NEI, 1987). Accurate multiple protein sequence 
alignments were made using the software CLUSTAL W (THOMPSON et al., 1994).  

RESULTS AND DISCUSSION 
Full-length cloning of S. domuncula T-box genes: Sd-Bra and Sd-Tbx 
A PCR product of the expected size was amplified from cDNA of the sponge S. 

domuncula using degenerate oligonucleotide primers corresponding to shared 
sequences of T-box genes as described under “Materials and Methods”. After 
sequencing and sending several independent clones to BLAST (BLAST, 1997), two 
different cDNAs could be identified as T-box containing genes. One of them 
showed the highest similarity with the T-box domain of members of the Brachyury 
subfamily, and was named Sd-Bra; the other showed the highest similarity with 
vertebrates Tbx4 and Tbx5 T-box domains and was termed Sd-Tbx.  

Applying the RACE technique with the same cDNA used above, we obtained 
the corresponding full-length Sd-Bra and Sd-Tbx cDNAs. Sd-Bra cDNA was 1315 
base pairs long, with an open reading frame that predicted a protein of 318 aa. Sd-
Tbx full length cDNA was 2373 base pairs long, with a single open reading frame 
that predicted a polypeptide of 501 aa, containing the T-box domain in the 3’ part of 
the protein. 

Interestingly, in some Sd-Bra independent clones we found 51 base pairs missing, 
which resulted in a 17 aa shorter polypeptide product, allowing us to predict two 
different protein products, Sd-Bra1 and Sd-Bra2, of 318 and 335 aa respectively.  

 
Phylogenetic analysis of S. domuncula T-box genes 
The sequence of the T-box domain have been taken as a basis for grouping the 

T-box genes into 5 different subfamilies: T or Brachyury, Tbrain, Tbx2, Tbx1 and 
Tbx6. In general, the different subfamilies are also distinguished by their pattern of 
expression and their function (PAPAIOANNOU & SILVER, 1998; reviewed in: SMITH, 
1997; PAPAIOANNOU, 2001). 

To address the question to which subfamily the sponge T-box domain proteins 
can be grouped, the T-box domains of Sd-Bra and of Sd-Tbx where aligned with T-
box domains of members of different metazoan phyla, and molecular phylogenetic 
analyses were performed by the neighbor-joining method (SAITOU & NEI, 1987). As 
seen in Fig. 1, Sd-Bra groups with members of the Brachyury or T family and Sd-
Tbx groups within Tbx2 subfamily, but more closely related to the Tbx4 and Tbx5 
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subgroup. According to the basal position of Porifera in the phylogenetic tree of 
Metazoans, the two sponge T-box genes are also in the root of each subfamily. 

Alignment of the T-box domain of Sd-Bra and Sd-Tbx with other T-box domain 
proteins shows a high degree of conservation between the diverse T-box proteins 
and the ones from S. domuncula. Even more, residues involved directly in DNA 
binding (according to MÜLLER & HERRMANN, 1997) are totally conserved (Fig. 2). 

Interestingly, in most taxa of metazoans a member of the Brachyury subfamily 
has been found. However, Tbx2 subfamily includes the chordate Tbx2-3-4-5 genes 
(BOLLAG et al., 1994; AGULNIK et al., 1996; BASSON et al., 1997), and, until today, 
only two members from protostomians [C. elegans Tbx2 (AGULNIK et al., 1995, 1997) 
and D. melanogaster omb (PFLUGFELDER et al., 1992)]. In cnidarians as well as in 
calcareous sponges only T-box genes belonging to the Brachyury subfamily have 
been reported [H. vulgaris Hybra1 and H. equinata Brachyury (TECHNAU & BODE, 
1999; KROIHER, pers. comm.); Sycon raphanus Sybra (MANUEL, 2001)]; and in 
echinoderms and hemichordates only T-box genes belonging to the Brachyury 
(PETERSON et al., 1999; SHOGUCHI et al., 1999), and to the Tbrain subfamilies have 
been identified (TAGAWA et al., 1998, 2001; SHOGUCHI et al., 2000; CROCE et al., 
2001) . 

Concerning the sequence outside the T-box region, only a few clear homologs 
and orthologs from very related animals have high similarities. No conserved 
domains or high homology was found between Sd-Bra or Sd-Tbx and other T-box 
genes. However, their C-terminal regions are rich in Ser, Thr and Pro residues, a 
common feature for transactivation domains. 

 
Cloning and characterization of S. domuncula forkhead genes 
A PCR product of the expected size was amplified from cDNA of the sponge S. 

domuncula using degenerate primers corresponding to conserved sequences of 
forkhead genes (see Materials and Methods). After sequencing and sending several 
clones to BLAST, four different cDNAs could be identified as winged helix 
containing genes (Sd-Fox1-4).  

To elucidate to which subfamily the sponge forkhead proteins can be grouped, 
their forkhead domains were aligned with members of the different metazoan phyla 
belonging to different forkhead subfamilies (according to KAESTNER et al., 2000), 
and molecular phylogenetic analyses were performed by the neighbor-joining 
method (SAITOU & NEI, 1987). Phylogenetic analysis grouped Sd-Fox1 and 4 to the 
I and F subfamily, respectively. Sd-Fox2 falls at the root of the I and G groups, and 
Sd-Fox3 in groups D and E (Fig. 3). 
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Fig. 1. Molecular phylogenetic analysis of T-box proteins. T-box domains from members of 
all T-box families were aligned with the Clustal W program. The different T-box subfamilies 
are indicated. T-box proteins from S. domuncula are shaded; Sd-Bra is grouped within the 
Brachyury / T subfamily and Sd-Tbx is grouped within the Tbx2 subfamily. The C. elegans 
sequences Ce-Tbx8 and Ce-Tbx9 were used as outgroup. The numbers at the nodes are an 
indication of the level of confidence, given in percentage, for the branches as determined by 
bootstrap analysis. Scale bar indicates an evolutionary distance of 0.1 aa substitutions per 
position in the sequence. (Ap, Asterina pectinifera; Br, Branchiostoma floridae; Ce, Caenorhabditis 
elegans; Ci, Ciona intestinalis; Dm, Drosophila melanogaster; Dr, Danio rerio; El, Eleutherodactylus coqui; 
He, Hydractinia echinata; Hp, Hemicentrotus pulcherrimus; Hr, Halocynthia roretzi; Hs, Homo sapiens; 
Hv, Hydra vulgaris; Lv, Lytechinus variegatus; Mm, Mus musculus; Ol, Oikopleura longicauda; Pd, 
Platynereis dumerilii; Pf, Ptychodera flava; Pl, Paracentrotus lividus; Pv, Patella vulgata; Sd, Suberites 
domuncula; Sy, Sycon raphanus; Xl, Xenopus laevis). (Sd-Bra and Sd-Tbx cDNA sequences are listed 
in the GenBank / EMBL / DDBJ databases and in a recent original paper ADELL et al., 
2003). 
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Fig. 2. Alignment of Sd-Bra and Sd-Tbx T-box domains with other representatives of T-box 
domain proteins. Identical and conserved amino acids are in black and gray, respectively. 
Amino acids directly involved in contacting DNA and in dimerization are marked with a solid 
circle and a rectangle, respectively (according to MÜLLER & HERRMANN, 1997); the numbers 
above the alignment indicate the position within this domain. 
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Fig. 3. Molecular phylogenetic analysis of forkhead proteins. Forkhead domains from 
members of all forkhead families were aligned with the Clustal W program. The different 
forkhead subfamilies are indicated (according to KAESTNER et al., 2000). The forkhead 
proteins from S. domuncula are shaded. Sc-FKH1-2 were used as outgroup. The numbers at 
the nodes are an indication of the level of confidence, given in percentage, for the branches as 
determined by bootstrap analysis. Scale bar indicates an evolutionary distance of 0.1 aa 
substitutions per position in the sequence. (Bf, Branchiostoma floridae; Ce, Caenorhabditis elegans; 
Ci, Ciona intestinalis; Cs, Ciona selvatgii; Dj, Dugesia japonica; Dm, Drosophila melanogaster; Dr, Danio 
rerio; Hs, Homo sapiens; Hv, Hydra vulgaris; Mm, Mus musculus; Mo, Molgula oculata; Sc, 
Saccharomyces cerevisiae; Sd, S. domuncula; Xl, Xenopus laevis). 
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Fig. 4. Alignment of S. domuncula forkhead domains with other representatives of forkhead 
proteins. Identical and conserved amino acids are in black and gray, respectively. The 
numbers above the alignment indicate the position within this domain. 
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In Fig. 4 alignment of forkhead domains of the four sponge genes with members 
of different forkhead proteins demonstrates the high degree of sequence 
conservation between all of them. 

The corresponding full-length cDNAs of the four sponge forkhead molecules 
were obtained by RACE technique. Sd-Fox1 cDNA was 1260 base pairs long, with 
an open reading frame that predicted a protein of 275 aa; Sd-Fox2 cDNA had 786 
base pairs, and an open reading frame of a putative protein of 218 aa; the Sd-Fox3 
cDNA comprised 1850 base pairs and a predicted protein of 444 aa and the Sd-Fox4 
cDNA with 1880 base pairs and a protein of 470 aa. All of them contained the 
forkhead in the N-terminal part of the protein. The potential role of the sponge 
forkhead genes is under investigation. 
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