A VEGETATION INDICATOR TO ASSESS MEDITERRANEAN PINEWOOD AFFECTED BY BAST SCALE (MATSUCOCCUS FEYTAUDI)

Authors

  • Claudia Turcato
  • Paolo Giordani
  • Mauro Giorgio Mariotti
  • Simonetta Peccenini

DOI:

https://doi.org/10.15167/2612-2960/BELS2019.1.1.1065

Keywords:

maritime pine (Pinus pinaster), hierarchical cluster analysis, indicator species analysis, non-metric multidimensional scale, understory vegetation, bast scale (Matsucoccus feytaudi).

Abstract

The bast scale (Matsucoccus feytaudi) is responsible for the destruction of most of the Pinus pinaster forests in the Mediterranean area, causing resination, defoliation and subsequent death of the tree.

Questions: is it possible to estimate pinewood health by analysing understory vegetation? Does the health status of pine forests changes during time? Do such variations involve understorey vegetation? What species in the understory vegetation better describe different conditions? What are the most relevant variables (defoliation and resination) influencing pine stands' condition. Location: The study area is located in the eastern part of Liguria (Italy) in pinewood affected by the bast scale Matsucoccus feytaudi. Method: we used: (1) hierarchical cluster analysis to discriminate pinewood health conditions (good and bad); (2) non-metric multidimensional scaling (NMS) to detect the most important variables influencing the pine stands' condition and understory vegetation; and (3) indicator species analysis (ISA) to determine indicator species corresponding to health conditions at the plot level. Our aim was to find a relationship between pines' health status and the variation in pinewood understory vegetation communities. Results: we found that understory vegetation composition depends on both pine stand health status and environment-related factors. Geographic variables (in particular latitude and altitude) and tree-related variables (percentage of resinated and defoliated trees) were associated with the main axes of variability of the understory vegetation. Three indicator species (Erica arborea, Quercus ilex and Castanea sativa), which were closely linked to pine stands health status, were significantly associated with different stages of pinewood dieback caused by bast scale. Conclusion: this study provides useful information and a good operational tool for technicians working in the forestry sector, and for public administrations and land managers to start good land-use planning.

References

Alía R., Martín S., de Miguel J., Galera R., Agúndez D., Gordo J., Salvador L., Catalán G. & Gil L., 1996. Regiones de procedencia Pinus pinaster Aiton, Ministerio de Medio Ambiente, Organismo Autónomo Parques Nacionales. ed. Madrid.

Anderson R.C., Loucks O.L. & Swain A.M., 1968. Herbaceous Response to Canopy Cover, Light Intensity, and Throughfall Precipitation in Coniferous Forests. Ecology 50: 255–263.

Arzone A. & Vidano C., 1981. Matsucoccus feytaudi Duc. (Homoptera, Margarodidae), a plant-sucking insect lethal to Pinus pinaster Ait. in Italy. Informatore Fitopatologico 31: 3–10.

Bartolucci F., Peruzzi L., Galasso G., Albano A., Alessandrini A., Ardenghi N.M.G., Astuti G., Bacchetta G., Ballelli S., Banfi E., Barberis G., Bernardo L., Bouvet D., Bovio M., Cecchi L., Di Pietro R., Domina G., Fascetti S., Fenu G., Festi F., Foggi B., Gall, L., Gottschlich G., Gubellini L., Iamonico D., Iberite M., Jiménez-Mejías P., Lattanzi E., Marchetti D., Martinetto E., Masin R.R., Medagli P., Passalacqua N.G., Peccenini S., Pennesi R., Pierini B., Poldini L., Prosser F., Raimondo F.M., Roma-Marzio F., Rosati L., Santangelo A., Scoppola A., Scortegagna S., Selvaggi A., Selvi F., Soldano A., Stinca A., Wagensommer R.P., Wilhalm T. & Conti F. (2018) An updated checklist of the vascular flora native to Italy, Plant Biosystems 152 (2): 179–303.

Bernetti G., 1995. Selvicoltura speciale. UTET, Torino.

Binazzi A., 2005. La cocciniglia del pino marittimo (Matsucoccus feytaudi Ducasse). In: La Cocciniglia Del Pino Marittimo in Italia. APAT, pp. 75–88.

Brosofske K.D., Chen J., Crow T.R., 2001. Understory vegetation and site factors: implications for a managed Wisconsin landscape. Forest Ecology and Management 146: 75–87.

Calvo L., Santalla S., Valbuena L., Marcos E., Tarrega R. & Luis Calabuig E., 2008. Post-fire natural regeneration of a Pinus pinaster forest in NW Spain. Plant Ecology 197: 81–90.

Carle P., 1974. The decline of Pinus pinaster in Provence. Role of insects in changing the biological equilibrium of forests invaded by Matsucoccus feytaudi. Annales des Sciences Forestieres 31: 1-26.

Covassi M. & Binazzi A, 1992. Primi focolai di Matsucoccus feytaudi Duc. nella Liguria orientale (Homoptera: Margarodidae). Redia 75: 453–466.

Dufrêne M. & Legendre P., 1997. Specie assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.

Eichorn J., Ferretti M., Innes J.L., Roskams P., & Vel E., 1996. Visual assessment of tree condition.

Elzinga C.L., Salzer D.W., Willoughby J.W. & Gibbs J.P., 2001. Monitoring plant and animal populations, Blackwell Science. ed.

Federer C.A. & Tanner C.B., 1966. Sensors for Measuring Light Available for Photosynthesis. Ecology 47: 654–657.

Fernandes P.M. & Rigolot E., 2007. The fire ecology and management of maritime pine (Pinus pinaster Ait.). Forest Ecology and Management 241: 1–13.

Fischer R., 2010. ICP forests manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests international co-operative programme on assessment and monitoring of air pollution effects on forests (ICP forests). Johann Heinrich von Thu?nen Inst., Inst. for World Forestry, Hamburg.

Gambi G., 1983. Le pinete di pino marittimo. Monti e Boschi.

Gatto P., Zocca A., Battisti A., Joao Barrento M., Branco M. & Paiva M.R, 2009. Economic assessment of managing processionary moth in pine forests: A case-study in Portugal. Journal of Environmental Management 90: 683–691.

Hedman C.W., Grace S.L. & King. S.E., 2000. Vegetation composition and structure of southern coastal plain pine forest: an ecological comparison. Forest Ecology and Management 134: 223-247.

Hiroaki T.I., Shin-Ichi T. & Hiura T., 2004. Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperate forest ecosystems. Forest Science 50: 342–355.

Jactel H., Menassieu P., Ceria A., Burban C., Regad J., Normand S. & Carcreff E., 1998. Une pullulation de la cochenille Matsucoccus feytaudi provoque un début de dépérissement du Pin maritime en Corse. Revue Forestière Français 50: 33–45.

Jennings S.B., Brown N. D. & Sheil D,, 1999. Assessing forest canopies and understorey illumination: canopy closure, canopy cover and other measures. Forestry 72: 59–73.

Kruskal J.B., 1964. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29: 1–27.

Le Maitre, D.C., 1998. Pines in cultivation: a global view. In: Ecology and Biogeography of Pinus, Cambridge University Press. ed. Cambridge.

Mariotti M., 2008. Atlante degli habitat Natura 2000 in Liguria, Regione Liguria, Assessorato all’ambiente.

Mather P.M., 1976. Computational methods of multivariate analysis in physical geography, J. Wiley & Sons. ed. London.

Mazurek H. & Romane F., 1986. Dynamics of young Pinus pinaster vegetation in a Mediterranean area: diversity and niche-strategy. Vegetatio 66: 27–40.

McCune B. & M. J. Mefford, 1999. PC-ORD. Multivariate Analysis of Ecological Data. MjM Software, Gleneden Beach, Oregon, U.S.A.

Nunez-Regueira L., Rodriguez Anon J.A. &Proup?n Castineras J. 1996. Calorific values and flammability of forest species in Galicia. Coastal and hillside zones. Bioresource Technology 57: 283–289

Orloci L., 1967. An agglomerative method for classification of plant communities. Journal of Ecology 55: 193–206.

Osorio L.F., Bravo F., Zaldívar P. & Pando V., 2009. Forest structure and plant diversity in maritime pine (Pinus pinaster Ait.) stands in central Spain. Investigación Agraria: Sistemas y Recursos Forestales 18, 314–321.

Pitkanen S., 1997. Correlation between stand structure and ground vegetation: an analytical approach. Plant ecology 131, 109–126.

Regione Liguria, 2005. Meteorological data consultation Available at http://www.cartografiarl.regione.liguria.it/SiraQualMeteo/script/PubAccessoDatiMeteo.asp

Rego F.C., Bunting S.C. & da Silva J.M., 1991. Changes in understory vegetation following prescribed fire in maritime pine forests. Forest Ecology and Management 41: 21–31.

Riom J., 1994. Dieback of maritime pine in SE France in the 1960s: the role of Matsucoccus feytaudi. Revue Forestière Française 46: 437–445.

Rivas-Martínez, S, 1981. Les étages bioclimatiques de la végétation de la Péninsule Ibérique. Anales Jard. Bot. Madrid 37: 251–268.

Turcato C., Paoli C., Scopesi C., Montagnani C., Mariotti M.G. & Vassallo P., 2015. Matsucoccus bast scale in Pinus pinaster forests: a comparison of two systems by means of emergy analysis” Journal of Cleaner production 96:539–548.

Ward J. H., 1963. Hierarchical grouping to optimise an objective function. Journal of the American Statistical Association 58: 236–244.

Wishart D., 1969. An algorithm for hierarchical classifications. Biometrics 25: 165–170.

Downloads

Published

2019-01-21